For the latest list check our Google Scholar. Last update: October 2025

Preprints (reverse chronogical order)

  1. Bell C, Chen L, Maristany MJ, Blaukopf C, Perez Lopez JI, Huertas J, Zhou H, Langer CCH, Steinacker TL, Schütte N, Doolittle LK, Espinosa JR, Redding S, Collepardo-Guevara R*, Rosen MK*, Gerlich DW*.
    An electrostatic repulsion model of centromere organization
    bioRxiv (2025). *Co-corresponding
  2. Pedraza E, Tejedor AR, Feito A, Gómez F, Collepardo-Guevara R, Sanz E, Espinosa JR.
    Predicting Saturation Concentrations of Phase-Separating Proteins via Thermodynamic Integration.
    bioRxiv (2025).
  3. Espejo NH, Feito A, Sanchez-Burgos I, Garaizar A, Conde MM, Rey A, Castro A, Collepardo-Guevara R, Tejedor AR, Espinosa JR.
    Compositional control of ageing kinetics in TDP-43 condensates.
    bioRxiv (2025).
  4. Shimazoe MA, Phillips C, Huertas J, Ide S, Tamura S, Farr S, Ashwin SS, Sasai M, Collepardo-Guevara R*, Maeshima K*.
    Linker histone H1 functions as a liquid-like glue to organize chromatin in living human cells.
    bioRxiv (2025). *Co-corresponding
  5. Tamon L, Fahmi Z, Ashford J, Collepardo-Guevara R, Sahakyan AB.
    Analysis of long-range contacts across cell types outlines a core sequence determinant of 3D genome organisation.
    bioRxiv (2025).
  6. Sanchez-Burgos I, Tejedor AR, Collepardo-Guevara R, Bernardino de la Serna J, Espinosa JR.
    Molecular insight on the mechanism of α1-antitrypsin condensate formation and maturation.
    bioRxiv (2025).
  7. Pedraza E, Hoyos D, Feito A, Gámez F, Sanchez-Burgos I, Collepardo-Guevara R, Tejedor AR, Espinosa JR.
    Charged mutations in the FUS low-complexity domain modulate condensate ageing kinetics.
    bioRxiv (2025).
  8. Sanchez-Burgos I, Tejedor AR, Feito A, Collepardo-Guevara R, Espinosa JR.
    Charged peptides enriched in aromatic residues decelerate condensate ageing driven by cross-β-sheet formation.
    bioRxiv (2025).
  9. Erkamp NA, Sanchez-Burgos I, Zhou A, Krug TJ, Qamar S, Sneideris T, Zhang E, Nakajima K, Chen A, Collepardo-Guevara R, van Hest J, St George-Hyslop P, Weitz DA, Espinosa JR, Knowles TPJ.
    Dynamically arrested condensate fusion creates complex structures with varying material properties.
    bioRxiv (2025).
  10. Refereed Papers (reverse chronological order)

  11. Zhou H, Maristany MJ, Huertas J, Russell K, Hutchings J, Hwang JH, Yao R, Shiozaki M, Zhao X, Doolittle LK, Gibson BA, Espinosa JR, Yu Z, Villa E, Collepardo-Guevara R*, Rosen MK*.
    Multi-Scale structure of a biomolecular condensate rationalises phase separation and material properties.
    Science (Just Accepted, 2025). *Co-corresponding
  12. Alberti S … Collepardo-Guevara R* et al.
    Current practices in the study of biomolecular condensates: a community comment.
    Nature Communications (2025). *Co-corresponding
  13. Hangpeg Li et al.
    Base pair resolution chromosome conformation capture reveals mechanistic insights into the nature of chromatin structure.
    Cell (2025). In press.
  14. Nakashima KK, Mihoubi FZ, Saraya J, Russell K, Rahmatova F, Robinson J, Maristany MJ, Huertas J, Rubio-Sanchez R, Collepardo-Guevara R*, O’Flaherty D*, Bonfio C*.
    Compositional and functional diversity of minimal primitive coacervates in a nucleic acid-peptide world.
    Nature Communications (2025). *Co-corresponding
  15. Chew PY, Collepardo-Guevara R*.
    Probing molecular and biophysical mechanisms of RNA and protein phase transitions with simulations and theory.
    Current Opinion in Cell Biology (2025).
  16. Montez M, Zhu D, Huertas Martin J, Maristany MJ, Rutjens Bas, Nielsen M, Collepardo-Guevara R, Dean C.
    Cold-induced nucleosome dynamics linked to silencing of Arabidopsis FLC.
    Nature Communications (2025).
  17. Chen L, Maristany MJ, Farr SE, Gibson B, Doolittle LK, Redding S, Espinosa JR, Huertas J, Collepardo-Guevara R*, Rosen MK*.
    Nucleosome Spacing Can Fine-Tune Higher Order Chromatin Assembly.
    Nature Communications (2025). *Co-corresponding
  18. Amaro R, …, Collepardo-Guevara R et al.
    The need to implement FAIR principles in biomolecular simulations.
    Nature Methods (2025).
  19. Ng TLC, Hoare MP, Maristany MJ, … Collepardo-Guevara R, Kumita J.
    Tandem-repeat proteins introduce tuneable properties to engineered biomolecular condensates.
    Chemical Science (2025).
  20. Tejedor AR, Aguirre Gonzalez A, Maristany MJ, Chew PY, Rusell K, Ramirez J, Espinosa JR, Collepardo-Guevara R.
    Chemically-informed coarse-graining of electrostatic forces in charge-rich biomolecular condensates.
    ACS Central Science (2025).
  21. Feito A, Sanchez-Burgos I, Tejero I, Sanz E, Rey A, Collepardo-Guevara R, Tejedor AR, Espinosa JR.
    Benchmarking residue-resolution protein coarse-grained models for simulations of biomolecular condensates.
    PLOS Computational Biology (2025).
  22. Maristany MJ, Aguirre Gonzalez A, Espinosa JR, Huertas J, Collepardo-Guevara R, Joseph JA.
    Decoding Phase Separation of Prion-Like Domains through Data-Driven Scaling Laws.
    eLife (2024).
  23. Feito A, Sanchez-Burgos I, Rey A, Collepardo-Guevara R, Tejedor AR, Espinosa JR.
    Capturing single-molecule properties does not ensure accurate prediction of biomolecular phase diagrams.
    Molecular Physics (2024).
  24. Torrino S, Oldham W, Tejedor AR, Sanchez-Burgos I, Rachedi N, Fraissard K, Chauvet C, Sbai C, O’Hara BP, Abelanet S, Brau F, Clavel S, Collepardo-Guevara R, Rene Espinosa J, Ben-sahra I, Bertero T.
    Mechano-dependent sorbitol accumulation supports biomolecular condensate.
    Cell (2024).
  25. Nicy, Joseph JA, Collepardo-Guevara R, Wales DJ.
    Energy landscapes and heat capacity signatures for peptides correlate with phase separation propensity.
    bioRxiv (2023).
  26. Shen Y, Chen A, Wang W, Shen Y, Ruggeri FS, Aime S, Wang Z, Qamar S, Espinosa JR, Garaizar A, St George-Hyslop P, Collepardo-Guevara R, Weitz DA, Vigolo D, Knowles TPJ.
    The liquid-to-solid transition of FUS is promoted by the condensate surface. Proc Natl Acad Sci USA 120:e2301366120 (2023).
    https://doi.org/10.1073/pnas.2301366120
  27. Brown K, Chew PY, Ingersoll S, Espinosa JR, Aguirre A, Kutateladze TG, Collepardo-Guevara R*, Ren X.
    Principles of assembly and regulation of condensates of Polycomb repressive complex 1 through phase separation. Cell Reports 42:113136 (2023). *Co-correspondence.
    https://doi.org/10.1016/j.celrep.2023.113136
  28. Chew PY, Joseph JA, Collepardo-Guevara R*, Reinhardt A*.
    Aromatic and arginine content drives multiphasic condensation of protein–RNA mixtures. Biophysical Journal 123(11):1342–1355 (2024). *Co-correspondence.
    https://doi.org/10.1016/j.bpj.2023.06.024
  29. Tejedor AR, Collepardo-Guevara R, Ramírez J, Espinosa JR.
    Time-Dependent Material Properties of Aging Biomolecular Condensates from Different Viscoelasticity Measurements in Molecular Dynamics Simulations. J Phys Chem B 127:4441–4459 (2023).
    https://doi.org/10.1021/acs.jpcb.3c01292
  30. Blázquez S, Sanchez-Burgos I, Ramírez J, Higginbotham T, Conde MM, Collepardo-Guevara R, Tejedor AR, Espinosa JR.
    Location and concentration of aromatic-rich segments dictates the percolating inter-molecular network and viscoelastic properties of ageing condensates. Advanced Science 10:2207742 (2023).
    https://doi.org/10.1002/advs.202207742
  31. Sanchez-Burgos I, Herriott L, Collepardo-Guevara R, Espinosa JR.
    Surfactants or scaffolds? RNAs of different lengths exhibit heterogeneous distributions and play diverse roles in RNA–protein condensates. Biophysical Journal 122(7):1295–1307 (2023).
    https://doi.org/10.1016/j.bpj.2023.02.021
  32. Saar K, Qian D, Good L, Morgunov A, Collepardo-Guevara R, Best RB, Knowles TPJ.
    Theoretical and data-driven approaches for biomolecular condensates. Chemical Reviews 123(13):7872–7925 (2023).
    https://doi.org/10.1021/acs.chemrev.2c00586
  33. Chew PY, Joseph JA, Collepardo-Guevara R*, Reinhardt A*.
    Thermodynamic origins of two-component multiphase condensates of proteins. Chemical Science 14:1820–1836 (2023). *Co-correspondence.
    https://doi.org/10.1039/D2SC05873A
  34. Orsborne SRE, Gorman J, Weiss LR, Sridhar A, Panjwani NA, Divitini G, Budden P, Palecek D, Ryan STJ, Rao A, Collepardo-Guevara R, El-Sagheer AH, Brown T, Behrends J, Friend RH, Auras F.
    Photogeneration of Spin Quintet Triplet–Triplet Excitations in DNA-Assembled Pentacene Stacks. J Am Chem Soc 145(9):5431–5438 (2023).
    https://doi.org/10.1021/jacs.2c13743
  35. Zhu H+, Narita M+, Joseph JA+, Krainer G, Arter WE, Saar KL, Ermann N, Espinosa JR, Shen Y, Kuri MA, Qi R, Xu Y, Collepardo-Guevara R*, Narita M*, Knowles TPJ*.
    The chromatin regulator HMGA1a undergoes phase separation in the nucleus. ChemBioChem 23(23):e202200450 (2022). *Co-correspondence; +co-first authors.
    https://doi.org/10.1002/cbic.202200450
  36. Tejedor AR+, Sanchez-Burgos I+, Estevez-Espinosa M, Garaizar A, Collepardo-Guevara R, Ramírez J, Espinosa JR.
    Protein structural transitions critically transform the network connectivity and viscoelasticity of RNA-binding protein condensates but RNA can prevent it. Nature Communications 13:5713 (2022). +co-first authors.
    https://doi.org/10.1038/s41467-022-32874-0
  37. Garaizar A, Espinosa JR, Joseph JA, Krainer G, Shen Y, Knowles TPJ, Collepardo-Guevara R.
    Aging can transform single-component protein condensates into multiphase architectures. Proc Natl Acad Sci USA 119:e2119800119 (2022).
    https://doi.org/10.1073/pnas.2119800119
  38. Huertas J, Woods EJ, Collepardo-Guevara R.
    Multiscale modelling of chromatin organisation: Resolving nucleosomes at near-atomistic resolution inside genes. Curr Opin Cell Biol 75:102067 (2022).
    https://doi.org/10.1016/j.ceb.2022.102067
  39. Garaizar A, Espinosa JR, Joseph JA, Collepardo-Guevara R.
    Kinetic interplay between droplet maturation and coalescence modulates shape of aged protein condensates. Scientific Reports 12:4390 (2022).
    https://doi.org/10.1038/s41598-022-08130-2
  40. Sanchez-Burgos I, Espinosa JR, Joseph JA, Collepardo-Guevara R.
    RNA length has a non-trivial effect in the stability of biomolecular condensates formed by RNA-binding proteins. PLOS Computational Biology 18(2):e1009810 (2022).
    https://doi.org/10.1371/journal.pcbi.1009810
  41. Welsh TJ+, Krainer G+, Espinosa JR+, Joseph JA, Sridhar A, Collepardo-Guevara R*, Alberti S*, Knowles TPJ*.
    Surface Electrostatics Govern the Emulsion Stability of Biomolecular Condensates. Nano Letters 22(2):612–621 (2022). *Co-correspondence; +co-first authors.
    https://doi.org/10.1021/acs.nanolett.1c03138
  42. Gorman J, Orsborne SRE, Sridhar A, Pandya R, Budden P, Ohmann A, Panjwani NA, Liu Y, Greenfield JL, Dowland S, Gray V, Ryan STJ, De Ornellas S, El-Sagheer AH, Brown T, Nitschke JR, Behrends J, Keyser UF, Rao A, Collepardo-Guevara R, Stulz E, Friend RH, Auras F.
    Deoxyribonucleic Acid Encoded and Size-Defined π-Stacking of Perylene Diimides. J Am Chem Soc 144(1):368–376 (2022).
    https://doi.org/10.1021/jacs.1c10241
  43. Joseph JA, Reinhardt A, Aguirre A, Chew PY, Russell K, Espinosa JR, Garaizar A, Collepardo-Guevara R.
    Physics-driven coarse-grained model for biomolecular phase separation with near-quantitative accuracy. Nature Computational Science 1(11):732–743 (2021).
    https://doi.org/10.1038/s43588-021-00155-3
  44. Itoh Y, Woods EJ, Minami K, Maeshima K, Collepardo-Guevara R.
    Local chromatin structure and dynamics: What can we learn from imaging and computational modeling?
    Current Opinion in Structural Biology 71:123–135 (2021).
    https://doi.org/10.1016/j.sbi.2021.05.004
  45. Da Rosa G, Perez A, Orozco M, Collepardo-Guevara R et al.
    Sequence-dependent structural properties of B-DNA: what have we learned in 40 years?
    Biophysical Reviews 13:597–610 (2021).
    https://doi.org/10.1007/s12551-021-00799-6
  46. Lichtinger SM, Garaizar A, Collepardo-Guevara R*, Reinhardt A*.
    Targeted modulation of protein liquid–liquid phase separation by evolution of amino acid sequence.
    PLOS Computational Biology 17(8):e1009328 (2021). *Co-correspondence.
    https://doi.org/10.1371/journal.pcbi.1009328
  47. Sanchez-Burgos I, Joseph JA, Collepardo-Guevara R, Espinosa JR.
    Size conservation emerges spontaneously in biomolecular condensates formed by scaffolds and surfactant clients.
    Scientific Reports 11:15241 (2021).
    https://doi.org/10.1038/s41598-021-94746-2
  48. Farr SE, Woods EJ, Joseph JA, Garaizar A, Collepardo-Guevara R.
    Nucleosome plasticity is a critical element of chromatin liquid–liquid phase separation and multivalent nucleosome interactions.
    Nature Communications 12:2883 (2021).
    https://doi.org/10.1038/s41467-021-23186-8
  49. Joseph JA, Espinosa JR, Sanchez-Burgos I, Garaizar A, Frenkel D, Collepardo-Guevara R.
    Thermodynamics and kinetics of phase separation of protein–RNA mixtures by a minimal model.
    Biophysical Journal 120(7):1219–1230 (2021).
    https://doi.org/10.1016/j.bpj.2021.02.017
  50. Krainer G+, Welsh TJ+, Joseph JA+, Espinosa JR, Wittmann S, de Csilléry E, Sridhar A, Toprakcioglu Z, Gudiskyte G, Czekalska MA, Arter WE, Guillén-Boixet J, Franzmann TM, St George-Hyslop P, Hyman AA*, Collepardo-Guevara R*, Alberti S*, Knowles TPJ*.
    Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and nonionic interactions.
    Nature Communications 12:1085 (2021). *Co-correspondence; +co-first authors.
    https://doi.org/10.1038/s41467-020-20663-z
  51. Sanchez-Burgos I, Espinosa JR, Joseph JA, Collepardo-Guevara R.
    Valency and binding affinity variations can regulate the multilayered organization of protein condensates with many components.
    Biomolecules 11(2):278 (2021).
    https://doi.org/10.3390/biom11020278
  52. Garaizar A, Sanchez-Burgos I, Collepardo-Guevara R, Espinosa JR.
    Expansion of intrinsically disordered proteins increases the range of stability of liquid–liquid phase separation.
    Molecules 25(20):4705 (2020).
    https://doi.org/10.3390/molecules25204705
  53. Espinosa JR, Joseph JA, Garaizar A, Sanchez-Burgos I, Frenkel D, Collepardo-Guevara R.
    Liquid network connectivity regulates the stability and composition of biomolecular condensates with many components.
    Proc Natl Acad Sci USA 117(24):13238–13247 (2020).
    https://doi.org/10.1073/pnas.2001999117
  54. Sridhar A, Farr SE, Portella G, Schlick T, Orozco M, Collepardo-Guevara R.
    Emergence of chromatin hierarchical loops from protein disorder and nucleosome asymmetry.
    Proc Natl Acad Sci USA 117(13):7216–7224 (2020).
    https://doi.org/10.1073/pnas.1912327117
  55. Sridhar A, Orozco M, Collepardo-Guevara R.
    Protein disorder-to-order transition enhances the nucleosome binding affinity of H1.
    Nucleic Acids Research 48(10):5318–5331 (2020).
    https://doi.org/10.1093/nar/gkaa254
  56. Sandoval-Perez A, Garaizar A, Farr SE, Berger R, Brehm MA, König G, Schneider SW, Huck V, Rädler JO, Collepardo-Guevara R, Aponte-Santamaría C.
    DNA binds to a specific site of the adhesive blood-protein von Willebrand factor guided by electrostatic interactions.
    Nucleic Acids Research 48(12):6839–6851 (2020).
    https://doi.org/10.1093/nar/gkaa466
  57. Espinosa JR, Garaizar A, Vega C, Frenkel D, Collepardo-Guevara R.
    Breakdown of the law of rectilinear diameter and related surprises in the liquid–vapor coexistence in systems of patchy particles.
    J Chem Phys 150(22):224510 (2019).
    https://doi.org/10.1063/1.5093793
  58. Collepardo-Guevara R, Portella G, Frenkel D, Vendruscolo M, Schlick T, Orozco M.
    Chromatin unfolding by epigenetic modifications explained by dramatic impairment of internucleosome interactions: A multiscale computational study.
    J Am Chem Soc 137:10205–10215 (2015).
    https://doi.org/10.1021/jacs.5b03448
  59. Gungor O, Collepardo-Guevara R, Schlick T.
    Forced unravelling of chromatin fibers with nonuniform linker DNA lengths.
    J Phys: Condens Matter 27:064113 (2015).
    https://doi.org/10.1088/0953-8984/27/6/064113
  60. Collepardo-Guevara R, Schlick T.
    Chromatin fiber polymorphism triggered by variations of DNA linker lengths.
    Proc Natl Acad Sci USA 111:8061–8066 (2014).
    https://doi.org/10.1073/pnas.1315872111
  61. Chakraborty D, Collepardo-Guevara R, Wales DJ.
    Energy landscapes, folding mechanisms, and kinetics of RNA tetraloop hairpins.
    J Am Chem Soc 136:18052–18061 (2014).
    https://doi.org/10.1021/ja507502e
  62. Arcella A, Portella G, Collepardo-Guevara R, Chakraborty D, Wales DJ, Orozco M.
    Structure and properties of DNA in apolar solvents.
    J Phys Chem B 118:8540–8548 (2014).
    https://doi.org/10.1021/jp502453d
  63. Luque A, Collepardo-Guevara R, Grigoryev S, Schlick T.
    Dynamic condensation of linker histone C-terminal domain regulates chromatin structure.
    Nucleic Acids Research 42:7553–7560 (2014).
    https://doi.org/10.1093/nar/gku449
  64. Hospital A, Faustino I, Collepardo-Guevara R, González C, Lluís Gelpí J, Orozco M.
    NAFlex: A web server for the study of nucleic acids flexibility.
    Nucleic Acids Research 41:W47–W55 (2013).
    https://doi.org/10.1093/nar/gkt385
  65. Collepardo-Guevara R, Schlick T.
    Insights into chromatin fibre structure by in vitro and in silico single-molecule stretching experiments.
    Biochem Soc Trans 41:494–500 (2013).
    https://doi.org/10.1042/BST20120161
  66. Collepardo-Guevara R, Schlick T.
    Crucial role of dynamic linker histone binding for DNA accessibility and gene regulation revealed by mesoscale modeling of oligonucleosomes.
    Nucleic Acids Research 40:8803–8817 (2012).
    https://doi.org/10.1093/nar/gks617
  67. Collepardo-Guevara R, Schlick T.
    The effect of linker histone’s nucleosome binding affinity on chromatin unfolding mechanisms.
    Biophysical Journal 101:1670–1680 (2011).
    https://doi.org/10.1016/j.bpj.2011.07.056
  68. Schlick T, Collepardo-Guevara R.
    Biomolecular Modeling and Simulation: The Productive Trajectory of a Field.
    SIAM News 44:6 (2011).
    https://archive.siam.org/news/news.php?id=1905
  69. Schlick T, Collepardo-Guevara R, Halvorsen LA, Jung S, Xiao X.
    Biomolecular modelling and simulation: a field coming of age.
    Quarterly Reviews of Biophysics 43:159–190 (2010/2011).
    https://doi.org/10.1017/S0033583510000116
  70. Perisic O+, Collepardo-Guevara R+, Schlick T.
    Modelling studies of chromatin fiber structure as a function of DNA linker length.
    J Mol Biol 403:777–802 (2010). +co-first author.
    https://doi.org/10.1016/j.jmb.2010.09.001
  71. Suleimanov Y, Collepardo-Guevara R, Manolopoulos DE.
    Bimolecular reaction rates from ring polymer molecular dynamics: application to H + CH₄ → H₂ + CH₃.
    J Chem Phys 134:044131 (2011).
    https://doi.org/10.1063/1.3518362
  72. Collepardo-Guevara R, Suleimanov Y, Manolopoulos DE.
    Bimolecular chemical reaction rates from ring polymer rate theory.
    J Chem Phys 130:174713 (2009).
    https://doi.org/10.1063/1.3125436
  73. Collepardo-Guevara R, Craig IR, Manolopoulos DE.
    Proton transfer in a polar solvent from ring polymer molecular dynamics reaction rate theory.
    J Chem Phys 128:144502 (2008).
    https://doi.org/10.1063/1.2895754
  74. Collepardo-Guevara R, Corvera Poiré E.
    Controlling viscoelastic flow by tuning frequency during occlusions.
    Phys Rev E 76:026301 (2007).
    https://doi.org/10.1103/PhysRevE.76.026301
  75. Collepardo-Guevara R, Corvera Poiré E.
    Maximizing the dynamic permeability during occlusions.
    Eur Phys J Special Topics 143:95–101 (2007).
    https://doi.org/10.1140/epjst/e2007-00058-y
  76. Collepardo-Guevara R, Walter D, Neuhauser D, Baer R.
    A Hückel study of the effect of a molecular cavity on the quantum conductance of an alkene wire.
    Chem Phys Lett 393:367–372 (2004).
    https://doi.org/10.1016/j.cplett.2004.06.114